Skip to main content

module pixeltable.functions.deepseek

View source on GitHub Pixeltable UDFs for Deepseek AI models. Provides integration with Deepseek’s language models for chat completions and other AI capabilities.

udf chat_completions()

chat_completions(
    messages: Json,
    *,
    model: String,
    model_kwargs: Json | None = None,
    tools: Json | None = None,
    tool_choice: Json | None = None
) -> Json
Creates a model response for the given chat conversation. Equivalent to the Deepseek chat/completions API endpoint. For additional details, see: https://api-docs.deepseek.com/api/create-chat-completion Deepseek uses the OpenAI SDK, so you will need to install the openai package to use this UDF. Request throttling: Applies the rate limit set in the config (section deepseek, key rate_limit). If no rate limit is configured, uses a default of 600 RPM. Requirements:
  • pip install openai
Parameters:
  • messages (Json): A list of messages to use for chat completion, as described in the Deepseek API documentation.
  • model (String): The model to use for chat completion.
  • model_kwargs (Json | None): Additional keyword args for the Deepseek chat/completions API. For details on the available parameters, see: https://api-docs.deepseek.com/api/create-chat-completion
  • tools (Json | None): An optional list of Pixeltable tools to use for the request.
  • tool_choice (Json | None): An optional tool choice configuration.
Returns:
  • Json: A dictionary containing the response and other metadata.
Examples: Add a computed column that applies the model deepseek-chat to an existing Pixeltable column tbl.prompt of the table tbl:
messages = [
    {'role': 'system', 'content': 'You are a helpful assistant.'},
    {'role': 'user', 'content': tbl.prompt}
]
tbl.add_computed_column(response=chat_completions(messages, model='deepseek-chat'))